# Electrochemical Behaviour Of Ferrocene/Ferricinium Redox System In Pure And CO<sub>2</sub> Saturated [C<sub>6</sub>MIM][PF<sub>6</sub>]

Sébastien Chanfreau Liang-Nian He\* Bing Yu

State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, People's Republic of China \*E-mail: heln@nankai.edu.cn

The electrochemical behaviour of ferrocene has been studied in green solvent combining pure ionic liquid and CO<sub>2</sub>. Experimental results were achieved for the Fc/Fc<sup>+</sup> (ferrocene/ferricinium ion) oxidation/reduction in pure and CO<sub>2</sub> saturated 1-hexyl-3-methylimidazolium hexafluorophosphate ([C<sub>6</sub>MIM][PF<sub>6</sub>]) over the temperature range from 298.15 K to 323.15 K. Peak shaped voltammograms were obtained and usual electrochemical parameters were calculated in order to classify electron process at the electrode. Diffusion coefficients of electroactive species were determined in the order of 10<sup>-11</sup> m<sup>2</sup> s<sup>-1</sup> using the Randles–Ševčík relationship. Mass transport was also favoured by both increases in temperature and dilution of CO<sub>2</sub> in the media.

Keyword: Ionic Liquid, Ferrocene, Electroanalysis, Diffusion coefficient

# INTRODUCTION

Development of green solvents is nowadays considered as one of the most exciting challenges and aims at reducing environmental impact of chemical processes [1]-[2].

The use of  $CO_2$  as a solvent has provided a powerful tool for the development of green processes and since the 1990's, research activity has sharply increased in this area [3].

Because of its very low dielectric constant, the addition of polarity modifiers is often required to make CO<sub>2</sub>-based conducting polar media. The use of pure  $CO_2$  as a solvent is limited to solid- or liquid-fluid extraction [4].

Ionic liquids (IL) have attracted a significant and growing interest since 1980's. They have been studied extensively as green solvents particularly in electrochemical processes thanks to their advantageous properties such as high polarity, large electrochemical windows or CO<sub>2</sub> solubility [5].

[1-alkyl-3-methylimidazolium][hexafluor ophosphate]-based ILs are some of widely studied ILs and 1-hexyl-3-methylimi dazolium hexafluorophosphate 54 Electrochemical behaviour of ferrocene/ferricinium redox system in pure and  $CO_2$  saturated [C6MIM][PF6]

 $[C_6MIM][PF_6]$  is considered to be suitable for water sensitive application. This IL exhibits hydrophobic properties and the largest alkyl side-chain length in  $[C_6MIM]$ cation might be susceptible of increasing viscosity. However, it showed similar decreasing viscosities versus temperature to widely used 1-butyl-3-methylimidazolium hexafluorophosphate  $[C_4MIM][PF_6]$ [6]-[7]-[8].

A specific place belongs to electrochemical applications combining IL with CO<sub>2</sub>, especially in electroanalysis [9]-[10]-[11].

Herein, electrochemical behaviour of ferrocene/ferricinium ion redox system was experimentally studied in pure and  $CO_2$  saturated [C<sub>6</sub>MIM][PF<sub>6</sub>]. Influence of temperature on diffusion coefficient was determined by cyclic voltammetry within temperature range from 298.15 to 323.15 K at atmosphere pressure.

#### MATERIAL

[C<sub>6</sub>MIM][PF<sub>6</sub>] (>99% purity) was provided by The Center for Green Chemistry and Catalysis (Lanzhou, China) and used as received. Ferrocene (Guangfu Research Institute-Tianjin, China) was sublimed before use and obtained crystals were orange in colour.

A three electrode system was chosen to carry out all the experiments. A 2 mm diameter Pt working electrode (CHI 102) and a 0.5 mm diameter x 37 mm Pt wire counter electrode (CHI 115) were provided by CH Instruments (U.S.A.). Ag wire was used as quasi-reference electrode. Cyclic voltammetry measurements were run on a Model 605D electrochemical analyzer/workstation (CH Instruments, Inc., U.S.A.).

## EXPERIMENTAL

Reversible redox reaction of ferrocene/ferricinium ion  $(Fc/Fc^{+})$  redox couple is represented by (1):

$$Fc \leftrightarrows Fc^+ + e$$
 (1)

Where e is exchanged electron.

Mass transfer occurs mostly perpendicularly to the surface (planar diffusion), leading to a typical peak-shaped voltammogram [4].

The peak current obeys the Randles–Ševčík relationship (2) which is widely used for the determination of diffusion coefficient [12]:

$$I_p = 0.4463 \left(\frac{F^3}{RT}\right)^{1/2} n^{\frac{3}{2}} A D^{1/2} C^* V^{1/2}$$
(2)

Where  $I_P$  is peak current (A), F is Faraday's constant (C), T is the temperature (K), R is the gas constant (J mol<sup>-1</sup> K<sup>-1</sup>), n is the number of exchanged electrons, A is the electrode area (cm<sup>2</sup>), v is the potentiostat scan rate (V s<sup>-1</sup>), D the diffusion coefficient (cm<sup>2</sup> s<sup>-1</sup>) and  $C^*$  the bulk concentration (mol cm<sup>-3</sup>) of the electroactive species.

Usual electrochemical parameters were calculated in order to classify electron process at the electrode [12]. So, the  $RI_P$ peak current ratio ( $RI_P = -I_{Pbackward} I_{Pforward}^{-1}$ ) and the  $\Delta E_P$  potential difference ( $\Delta E_P = E_{forward} - E_{backward}$ ) were obtained from the cyclic voltammograms and compared with theoretical values 1 and 2.3 R T (n F)<sup>-1</sup>, respectively.

Activation energy  $(E_a)$  was also determined from Arrhenius equation (3):

$$D = D_0 exp\left(\frac{-E_a}{RT}\right) \tag{3}$$

Where  $D_o$  (m<sup>2</sup> s<sup>-1</sup>) is a constant corresponding to the hypothetical diffusion coefficient at infinite temperature [9].

In a typical experiment, a 10 mL glass vial was filled with a solution of Fc in  $[C_6MIM][PF_6]$  at 0.01 M concentration. The vial was set inside a thermostated bath at desired temperature and solution was degassed by bubbling N<sub>2</sub> for approximately 20 min and then by bubbling CO<sub>2</sub> while CO<sub>2</sub> saturated solution was required. Electrochemical measurements were also run at different scan rates.

#### **RESULTS AND DISCUSSIONS**

Peak shaped voltammograms were obtained at scan rate *v* range from 0.03 to 0.1 V s<sup>-1</sup>, indicating planar diffusion mode in both pure and CO<sub>2</sub> saturated IL (Fig. 1). Forward and backward scan showed peaks for Fc oxidation and Fc<sup>+</sup> reduction, respectively. Increase in absolute values of peak intensities was observed with increase in scan rate and higher values were measured in CO<sub>2</sub> saturated IL whatever scan rate or temperature.



**Fig. 1:** Cyclic voltammograms of Fc/Fc<sup>+</sup> redox system in pure (A) and CO<sub>2</sub> saturated (B)  $[C_6MIM][PF_6]$ .  $C_{Fc}$  = 0.01 M, T = 308.15 K



**Fig. 2:**  $I_{Pforward}$  (dark symbols) and  $I_{Pbackward}$  (light symbols) as a function of  $v^{1/2}$  at several *T*/K in pure (A) and CO<sub>2</sub> saturated (B) [C<sub>6</sub>MIM][PF<sub>6</sub>].  $C_{Fc}$  = 0.01 M

Linear relationships with resolution greater than 99% were also observed while

forward and backward peak intensities (*I<sub>Pforward</sub>* and *I<sub>Pbackward</sub>*, respectively) were

plotted against square root of scan rates  $(v^{1/2})$  and results are presented in Fig. 2. So, increase in absolute values of measured peak intensities was not only observed with increase in scan rate but also with increase in *T*/K for both Fc and Fc<sup>+</sup> species and with change in solvent.

Electrochemical parameters were determined (Table 1). Values of  $\Delta E_P$  potential difference are greater than theoretical values whatever *T*/K, especially in pure IL and may be explained by quasireversibility of the electron transfer or resistivity of the electrolyte [12].

Better results were achieved while IL was saturated with CO<sub>2</sub>. Difference between  $\Delta E_P$ and  $\Delta E_P^{th}$  decreases with increasing temperature and no significant change was observed in pure IL. So, this indicates a quasi-reversible redox process. *RI*<sub>P</sub> peak current ratio values were also close to theoretical value of 1. Nernstian wave behaviour was favoured by both CO<sub>2</sub> dilution and increase in temperature.

**Table 1.** Electrochemical parameters determined from cyclic voltammograms.  $v = 0.05 \text{ V s}^{-1}$ 

| Solvent                                                | T/K    | RI <sub>P</sub> | $\Delta E_P$ | $\Delta E_P^{th^*}$ |  |
|--------------------------------------------------------|--------|-----------------|--------------|---------------------|--|
|                                                        |        |                 | /mV          | /mV                 |  |
| Pure IL                                                | 298.15 | 0.98            | 123          | 59                  |  |
|                                                        | 305.15 | 0.99            | 117          | 60                  |  |
|                                                        | 308.15 | 0.99            | 117          | 61                  |  |
|                                                        | 313.15 | 0.94            | 119          | 62                  |  |
| CO <sub>2</sub> sat.<br>IL                             | 304.15 | 1.02            | 123          | 60                  |  |
|                                                        | 308.15 | 1.02            | 115          | 61                  |  |
|                                                        | 313.15 | 1.02            | 108          | 62                  |  |
|                                                        | 318.15 | 0.98            | 104          | 63                  |  |
|                                                        | 323.15 | 1.00            | 98           | 64                  |  |
| $^{*}\Delta E_{P}{}^{th} = 2.3 \ R \ T \ (n \ F)^{-1}$ |        |                 |              |                     |  |

So, clear diffusion control was observed whatever solvent conditions. Mass transport was favoured by an increase in temperature and the Randles–Ševčík relationship was used to determine influence of T/K on diffusion coefficient ( $D/cm^2 s^{-1}$ ) of electroactive species in [C<sub>6</sub>MIM][PF<sub>6</sub>] (Fig. 3).

Linear behaviour is obtained for both species whatever the solvent. Diffusion is highly enhanced while IL was saturated with CO<sub>2</sub>.



**Fig. 3:** Temperature dependence of electroactive species diffusion in pure (dark symbols) and CO<sub>2</sub> saturated (light symbols)  $[C_6MIM][PF_6]$ .  $\Box$ , D(Fc);  $\diamondsuit$ ,  $D(Fc^+)$ 

Lower values of *D* were obviously determined for  $Fc^+$  since lower values of peak height are often obtained for a reversible system at backward scan. The neutral Fc species diffuses more quickly than the charged  $Fc^+$  species through the ionic liquid media [9].

Diffusion of electroactive species was favoured by increase in *T*/K in pure IL and  $CO_2$  dilution. Linear behaviour of *D*/m<sup>2</sup> s<sup>-1</sup> plotted against (*R T*)<sup>-1</sup> shows higher standard deviation in  $CO_2$  saturated IL. Solution equilibrium may not have been reached while viscous IL media was saturated with  $CO_2$  and  $CO_2$  solubility highly depends on *T*/K. So, diffusion coefficients of electroactive species were determined in good agreement with literature [13]-[11].

Activation energy was also determined for both species in both solvents (Table 2).

**Table 2:** Activation energy  $(E_a)$  ofelectroactive species in pure and  $CO_2$ saturated IL

| Solvent | Species | <i>E</i> <sub>a</sub> /kJ mol⁻¹ |
|---------|---------|---------------------------------|
| Duro II | Fc      | 35.5                            |
| Pure IL | Fc⁺     | 28.8                            |
|         | Fc      | 34.8                            |
|         | Fc⁺     | 35.5                            |

## CONCLUSION

Electrochemical behaviour of redox system was studied in pure and  $CO_2$  saturated [C<sub>6</sub>MIM][PF<sub>6</sub>].

Higher values of peak height were measured and reversibility of  $Fc/Fc^+$  redox couple were considered faster while IL was saturated with  $CO_2$ .

Mass transport of both electroactive species was diffusion-controlled and favoured by decreases in media viscosity, thanks to increase in temperature and CO<sub>2</sub> dilution.

So, it was showed that  $CO_2$  enrichment of IL is suitable for species diffusion investigation and the use of pressurized  $CO_2$ -IL mixtures may allow new perspectives, especially for electrochemical processes. Development of green  $CO_2$  rich solvent is of great interest while  $CO_2$  could be considered as a solvent and a reagent [14].

#### ACKNOWLEDGEMENT

Science and Technology Fellowship programme in China (European

Commission), National Natural Science Foundation of China (NSFC, Grants Nos. 20421202, 20672054, 20872073), Research Fellowship for International Young Scientists from NSFC (Grant No. 20950110325), the 111 project (B06005), and the Committee of Science and Technology of Tianjin are gratefully acknowledged.

## REFERENCES

- M. Lancaster: "Green chemistry: an introductory text", Cambridge, UK. (2002).
- 2) P.T. Anastas and J.C. Warner: "Green Chemistry: Theory and Practice", Oxford University Press, New York (2000).
- J.M. DeSimone and W. Tumas: "Green Chemistry Using Liquid and Supercritical Carbon Dioxide", Oxford University Press, New York (2003).
- S. Chanfreau, P. Cognet, S. Camy and J.-S. Condoret: Electrochemical determination of ferrocene diffusion coefficient in liquid media under high CO<sub>2</sub> pressure: Application to DMF–CO<sub>2</sub> mixtures, *J. Electroanal. Chem.*, 604 (2007) 33-40.
- P. Bonhôte, A.P. Dias, N. Papageorgiou, K. Kalyanasundaram and M. Grätzel: Hydrophobic, Highly Conductive Ambient-Temperature Molten Salts, *Inorg. Chem.* 35 (1996) 1168-1178.
- P. Hapiot and C. Lagrost: Electrochemical Reactivity in Room-Temperature Ionic Liquids, *Chem. Rev.* **108** (2008) 2238-2264.
- S. Chanfreau, M. Mena, J. Porras-Domínguez, M. Ramírez-Gilly, M. Gimeno, P. Roquero, A. Tecante and E.

Bárzana: Enzymatic synthesis of poly-l-lactide and poly-l-lactide-co-glycolide in an ionic liquid. *Bioprocess Biosyst. Eng.* **33** (2010) 629-638.

- M. Mena, S. Chanfreau, M. Gimeno and E. Bárzana: Enzymatic synthesis of poly-l-lactide-co-glycolide in the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. *Bioprocess Biosyst. Eng.* 33 (2010) 1095-1101.
- 9) E.I. Rogers, D.S. Silvester, D.L. Poole, L. Aldous, C. Hardacre and R.G. Compton: Voltammetric Characterization of the Ferrocene|Ferrocenium and Cobaltocenium|Cobaltocene Redox Couples in RTILs. J. Phys. Chem. C 112 (2008) 2729-2735.
- 10) M. Galinski, A. Lewandowski and I. Stepniak: Ionic liquids as electrolytes. *Electrochim. Acta* **51** (2006) 5567-5580.

- A. Lewandowski, L. Waligora and M. Galinski: Ferrocene as a Reference Redox Couple for Aprotic Ionic Liquids. *Electroanalysis* **21** (2009) 2221-2227.
- 12) A.J. Bard and L.R. Faulkner: "Electrochemical Methods: Fundamentals and Applications", John Wiley & Sons, Inc. 2nd edition, New York (2001).
- 13) J.G. Huddleston, A.E. Visser, W.M. Reichert, H.D. Willauer, G.A. Broker and R.D. Rogers: Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. *Green Chem.* **3** (2001) 156-164.
- 14) S. Chanfreau, P. Cognet, S. Camy and J.-S.
  Condoret: Electrocarboxylation in supercritical CO<sub>2</sub> and CO<sub>2</sub>-expanded liquids *J. Supercrit. Fluid*, **46** (2008) 156-162.