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Cloud point extraction (CPE) has shown to be an effective technique to remove 
organic compounds from contaminated water using nonionic surfactant as a 
separating agent. To make this process more economically attractive, the spent 
nonionic surfactants should be recycled and reused. This work utilized a packed 
column operated under vacuum in co-current mode to remove the volatile organic 
compounds (VOCs) from the secondary alcohol ethoxylates, AEs, coacervate solution. 
The co-current operation can effectively avoid plugging, excessive foaming, and 
flooding. The selected volatile organic contaminants are aromatic hydrocarbons such 
as benzene, toluene, and ethylbenzene. The hydrophobic properties of the VOCs are 
described by an octanol-water partition coefficient (Kow). The results show that as the 
Kow increases, the Ks substantially increases while the Happ of the VOCs significantly 
decreases. The reduction of VOCs volatilization is possibly due to greater partitioning 
of the VOCs into surfactant micelles. The similar trend is also observed in the 
continuous operation. The results show that as the Kow increases, the percentage of 
VOCs removal and the Kxa decrease due to the VOCs’ hydrophobic effect. The 
removal percentages of the VOCs vary from 60 to 90%. The R2 of the log-log and 
semi-log relationships between Kow and studied parameters are observed in the 
range of 0.96-0.99.  
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INTRODUCTION 
 

For the past several years, the gravity of 

the problem with contamination in ground, 
surface, and waste water by volatile organic 
compounds (VOCs) has become increasingly 
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evident. The sources of these VOCs can be 
varied: leaking underground storage tanks, 
poor disposal practices, application to soil 
for agricultural purposes, or an accidental 
spill of VOCs. These compounds also cause 
health problems even though they are 
present in the system at very low 
concentration. The economic removal of 
these compounds is needed for safety and 
public health reasons [1]. The cloud point 
extraction process (CPE) has been proposed 
for the treatment of contaminated water 
because it consumes little energy and, 
generally the surfactant used in the process 
is biodegradable and not harmful to the 
environment. This process utilizes a nonionic 
surfactant as separating agent. Separation is 
conducted by taking advantage of the cloud 
point phenomenon that occurs when a 
nonionic surfactant solution is heated 
beyond its cloud point temperature. The 
CPE in rotating disc contactor (RTC) shows 
excellent performance over a traditional 
liquid-liquid extraction because it could 
operate with high efficiency, at low cost, and 
in a sustainable manner [2] - [4]. 

To make the CPE more economically 
attractive, the surfactants have to be 
recovered and reused. Since these organic 
solutes have high volatility, vacuum 
stripping has been proposed to be the 
promising technique to remove the VOCs 
from the surfactant solution [5] - [7]. 

In previous studies, the co-current 
vacuum stripping in a packed column was 
successfully applied for the removal of VOCs 
from alkyl phenol ethoxylates (APEs) 
coacervate phase solution without flooding 
and plugging [6] – [7]. In this work, this 
process is further studied for the removal of 
VOCs from alcohol ethoxylates (AEs) 

coacervate phase solution. The AEs 
surfactant is selected because of its 
environmental benefits while the APEs is 
suspected to cause endocrine disruption. In 
addition, the equilibrium studies and the 
efficiency of vacuum stripping are discussed.  
 
MATERIAL 
 

The secondary alcohol ethoxylates (AEs), 
Tergitol 15-S-7 (C11-15H23-31O(CH2CH2O)7.3H), 
was purchased from Union Carbide and was 
used as the nonionic surfactant. AEs has an 
alcohol group located at various positions 
along the chain of 11–15 carbon atoms with 
an average ethylene oxide number of 7.3. 
Reagent grade benzene with 99.8% purity, 
toluene and ethylbenzene with 99.5% purity 
were purchased from J.T. Baker (Phillipsburg, 
NJ, USA). All chemicals were used as 
received. Deionized water was used for the 
solution preparation. 
 
APPARATUS 
 

A cylindrical stripping column 
constructed of acrylic fiber with a diameter 
of 2.5 in. and a height of 12 in., has an acrylic 
water jacket 5 in. in diameter. The stripping 
column was packed with 5x5 mm glass 
Raschig ring. The feed tank is a 9 in. height 
and 4 in. diameter vessel made of glass with 
a 6.5-in. diameter acrylic water jacket. The 
product tank is 6 in. in height and 6 in. in 
diameter and made of stainless steel. The 
system is maintained under vacuum 
conditions by a rotary vane pump. A 
peristaltic pump was used to transfer feed 
solution into the stripping column. The 
operating temperature was controlled using 
a water circulating bath. 
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The diagram of the vacuum stripping unit 
is shown in Fig. 1 [6].  
 

 
 
Figure 1. Co-current Vacuum Stripping Unit 
 
EXPERIMENTAL  
 
Equilibrium time determination 

The partitioning of the VOCs in water and 
coacervate phase solution was observed by 
modification of the method called the 
equilibrium partitioning in closed systems 
(EPICS) [8]. The operating temperature was 
controlled at 40 °C for all experiment runs 
[7]. 

The partitioning of VOCs in aqueous 
phase solution was measured by adding 4 
mL of the water containing the VOCs in 
several identical 22-mL glass vials with 
Teflon-coated septa and aluminum holed 
caps. The vials were placed in an isothermal 
chamber of the headspace autosampler kept 
at 40 °C. Then, the vapor sample in the 
headspace was automatically collected and 
analyzed in a gas chromatograph. The 
equilibration time of the VOCs in the system 
was determined from the progression of 
VOC concentration with time. For the 
surfactant-containing system, the 
partitioning of VOCs in coacervate phase 
solution is observed by the same method. 

Equilibrium data determination 
Several identical 22-mL glass vials of 

VOCs in aqueous solution were prepared 
using the same method as that in 
equilibrium study. After reaching equilibrium, 
the VOC concentrations in the headspace 
and in the liquid phase were analyzed by the 
gas chromatograph connected to the 
headspace autosampler. Finally, the 
vapor-liquid equilibrium correlations for the 
VOCs were obtained. For the 
surfactant-containing system, the 
experiments were conducted in a similar 
manner as those for the VOC-water system. 
The data from this experiment were utilized 
to calculate the apparent Henry’s law 
constant (Happ) and the solubilization 
constant (Ks) [6]. These parameters 
respectively represent the volatility and 
solubility of the VOCs in the surfactant 
solution.    
                 
Continuous Operation 

The pressure inside the system was 
maintained under vacuum during the 
operation by using the rotary vane pump. 
The operating temperature was controlled 
using the circulating water bath at a 
constant temperature of 40 °C. After the 
column pressure was stable, 1.0 mL/min of 
the feed solution was pumped onto the top 
of the column by the peristaltic pump. The 
viscous surfactant solution flowed down 
along the packed column and was stored in 
the product tank. A vapor suction line was 
attached to the bottom of the stripping 
column to operate in co-current mode.  A 
cold trap was installed to prevent the rotary 
vane pump from liquid-induced damage. 
The vacuum stripping packed column 
reached steady state within 90 minutes. The 
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applied for predicting VOCs stripping 
performance. Similar studies using other 
hydrophobic solutes are recommended.  
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