Tiron Mitigates Thioacetamide-Induced Acute Liver Injury

https://doi.org/10.14499/jfps

Amal Mahmoud Shoeib(1), Eman Said(2*), Manar Ahmed Nader(3), Hatem Abd-Elrahman Salem(4), Elsayed Mohamed Ammar(5)

(1) Faculty of Pharmacy, Mansoura University
(2) Pharmacology and Toxicology dep., Faculty of Pharmacy, Mansoura University
(3) Pharmacology and Toxicology dep., Faculty of Pharmacy, Mansoura University
(4) Pharmacology and Toxicology dep., Faculty of Pharmacy, Mansoura University
(5) Pharmacology and Toxicology dep., Faculty of Pharmacy, Mansoura University
(*) Corresponding Author

Abstract


Acute liver injury is a crippling disorder accompanied by extensive impairment of liver’s synthetic, metabolic and detoxifying functions. Tiron is a synthetic vitamin E analog, proven to be anti-oxidant. This study was undertaken to investigate the protective activity of tiron against thioacetamide (TAA)-induced acute liver injury. Rats were orally treated with tiron (300 mg/kg) for eight days prior to I.V. TAA either (70 mg/kg) or (280 mg/kg) to induce acute liver injury. Biochemical evaluation of hepatotoxicity indices, oxidative stress, cytotoxicity and inflammatory marker: interleukin-6 (IL-6) was conducted along with histopathological examination. Meanwhile, tiron was found to mitigate the TAA-induced elevation of ALT, AST and ALP. However, serum albumin levels mildly improved. Tiron restored liver GSH contents and maintained liver SOD activity. Moreover, tiron significantly reduced the level of serum IL-6. In context, histopathological examination revealed that tiron slightly reduced the extent of TAA-induced necrosis. Tiron has manifested the observed hepatoprotective effect probably by manipulating inflammatory response of liver to injury via downregulating the expression of inflammatory IL-6 and alleviating oxidative stress.  


Full Text:

PDF


References

Abdelaziz, R.R., Elkashef, W.F., Said, E., 2015. Tranilast reduces serum IL-6 and IL-13 and protects against thioacetamide-induced acute liver injury and hepatic encephalopathy. Environ. Toxicol. Pharmacol. 40, 259-267.

Akbay, A., Cinar, K., Uzunalimoglu, O., Eranil, S., Yurdaydin, C., Bozkaya, H., Bozdayi, M., 1999. Serum cytotoxin and oxidant stress markers in N-acetylcysteine treated thioacetamide hepatotoxicity of rats. Hum. Exp. Toxicol. 18, 669-676.

Alkiyumi, S.S., Abdullah, M.A., Alrashdi, A.S., Salama, S.M., Abdelwahab, S.I., Hadi, A.H., 2012. Ipomoea aquatica extract shows protective action against thioacetamide-induced hepatotoxicity. Molecules 17, 6146-6155.

Alshawsh, M.A., Abdulla, M.A., Ismail, S., Amin, Z.A., 2011. Hepatoprotective Effects of Orthosiphon stamineus Extract on Thioacetamide-Induced Liver Cirrhosis in Rats. Evid. Based Complement. Alternat. Med. 2011, 103039.

Balduzzi, M., Diociaiuti, M., De Berardis, B., Paradisi, S., Paoletti, L., 2004. In vitro effects on macrophages induced by noncytotoxic doses of silica particles possibly relevant to ambient exposure. Environ. Res. 96, 62-71.

Bautista, M., Andres, D., Cascales, M., Morales-Gonzalez, J.A., Sanchez-Reus, M.I., 2010. Effect of gadolinium chloride on liver regeneration following thioacetamide-induced necrosis in rats. Int J Mol Sci 11, 4426-4440.

Berger, N.A., 1985. Poly(ADP-ribose) in the cellular response to DNA damage. Radiat. Res. 101, 4-15.

Bernal, W., Wendon, J., 1999. Acute liver failure; clinical features and management. Eur. J. Gastroenterol. Hepatol. 11, 977-984.

Bowes, J., Thiemermann, C., 1998. Effects of inhibitors of the activity of poly (ADP-ribose) synthetase on the liver injury caused by ischaemia-reperfusion: a comparison with radical scavengers. Br. J. Pharmacol. 124, 1254-1260.

Bruck, R., Aeed, H., Avni, Y., Shirin, H., Matas, Z., Shahmurov, M., Avinoach, I., Zozulya, G., Weizman, N., Hochman, A., 2004. Melatonin inhibits nuclear factor kappa B activation and oxidative stress and protects against thioacetamide induced liver damage in rats. J. Hepatol. 40, 86-93.

Cao, S., Zhang, X., Edwards, J.P., Mosser, D.M., 2006. NF-kappaB1 (p50) homodimers differentially regulate pro- and anti-inflammatory cytokines in macrophages. J. Biol. Chem. 281, 26041-26050.

Cemek, M., Aymelek, F., Buyukokuroglu, M.E., Karaca, T., Buyukben, A., Yilmaz, F., 2010. Protective potential of Royal Jelly against carbon tetrachloride induced-toxicity and changes in the serum sialic acid levels. Food Chem. Toxicol. 48, 2827-2832.

Chen, T.M., Subeq, Y.M., Lee, R.P., Chiou, T.W., Hsu, B.G., 2008. Single dose intravenous thioacetamide administration as a model of acute liver damage in rats. Int. J. Exp. Pathol. 89, 223-231.

Chilakapati, J., Shankar, K., Korrapati, M.C., Hill, R.A., Mehendale, H.M., 2005. Saturation toxicokinetics of thioacetamide: role in initiation of liver injury. Drug Metab. Dispos. 33, 1877-1885.

Dayer, J.M., 2003. The pivotal role of interleukin-1 in the clinical manifestations of rheumatoid arthritis. Rheumatology (Oxford) 42 Suppl 2, ii3-10.

Elsharkawy, A.M., Mann, D.A., 2007. Nuclear factor-kappaB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46, 590-597.

Gaze, D.C., 2007. The role of existing and novel cardiac biomarkers for cardioprotection. Current opinion in investigational drugs (London, England : 2000) 8, 711-717.

Gill, R.Q., Sterling, R.K., 2001. Acute liver failure. J. Clin. Gastroenterol. 33, 191-198.

Gitto, S., Vitale, G., Villa, E., Andreone, P., 2015. Treatment of nonalcoholic steatohepatitis in adults: present and future. Gastroenterology research and practice 2015, 732870.

Gomez, M., Domingo, J.L., Llobet, J.M., Corbella, J., 1991. Effectiveness of some chelating agents on distribution and excretion of vanadium in rats after prolonged oral administration. J. Appl. Toxicol. 11, 195-198.

Hagemann, T., Lawrence, T., McNeish, I., Charles, K.A., Kulbe, H., Thompson, R.G., Robinson, S.C., Balkwill, F.R., 2008. "Re-educating" tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 205, 1261-1268.

Han, D., Hanawa, N., Saberi, B., Kaplowitz, N., 2006. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am. J. Physiol. Gastrointest. Liver Physiol. 291, G1-7.

Jean-Baptiste, E., 2007. Cellular mechanisms in sepsis. J. Intensive Care Med. 22, 63-72.

Kim, H.Y., Jhun, J.Y., Cho, M.L., Choi, J.Y., Byun, J.K., Kim, E.K., Yoon, S.K., Bae, S.H., Chung, B.H., Yang, C.W., 2014. Interleukin-6 upregulates Th17 response via mTOR/STAT3 pathway in acute-on-chronic hepatitis B liver failure. J. Gastroenterol. 49, 1264-1273.

Kmiec, Z., 2001. Cooperation of liver cells in health and disease. Adv. Anat. Embryol. Cell Biol. 161, Iii-xiii, 1-151.

Koyama, T., Tawa, M., Yamagishi, N., Tsubota, A., Sawano, T., Ohkita, M., Matsumura, Y., 2013. Role of superoxide production in post-ischemic cardiac dysfunction and norepinephrine overflow in rat hearts. Eur. J. Pharmacol. 711, 36-41.

Ku, P.M., Chen, L.J., Liang, J.R., Cheng, K.C., Li, Y.X., Cheng, J.T., 2011. Molecular role of GATA binding protein 4 (GATA-4) in hyperglycemia-induced reduction of cardiac contractility. Cardiovasc. Diabetol. 10, 57.

Kucera, O., Lotkova, H., Stankova, P., Podhola, M., Rousar, T., Mezera, V., Cervinkova, Z., 2011. Is rat liver affected by non-alcoholic steatosis more susceptible to the acute toxic effect of thioacetamide? Int. J. Exp. Pathol. 92, 281-289.

Kwon, H.J., Lim, J.H., Han, J.T., Lee, S.B., Yoon, W.K., Nam, K.H., Choi, I.P., Kim, D.Y., Won, Y.S., Kim, H.C., 2010. The role of vitamin D3 upregulated protein 1 in thioacetamide-induced mouse hepatotoxicity. Toxicol. Appl. Pharmacol. 248, 277-284.

Lacour, S., Gautier, J.C., Pallardy, M., Roberts, R., 2005. Cytokines as potential biomarkers of liver toxicity. Cancer Biomark. 1, 29-39.

Ling, Y.H., Liebes, L., Zou, Y., Perez-Soler, R., 2003. Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem. 278, 33714-33723.

Mantawy, E.M., Tadros, M.G., Awad, A.S., Hassan, D.A., El-Demerdash, E., 2012. Insights antifibrotic mechanism of methyl palmitate: impact on nuclear factor kappa B and proinflammatory cytokines. Toxicol. Appl. Pharmacol. 258, 134-144.

Masella, R., Di Benedetto, R., Vari, R., Filesi, C., Giovannini, C., 2005. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. The Journal of nutritional biochemistry 16, 577-586.

Masubuchi, Y., Bourdi, M., Reilly, T.P., Graf, M.L., George, J.W., Pohl, L.R., 2003. Role of interleukin-6 in hepatic heat shock protein expression and protection against acetaminophen-induced liver disease. Biochem. Biophys. Res. Commun. 304, 207-212.

Medzhitov, R., 2010. Inflammation 2010: new adventures of an old flame. Cell 140, 771-776.

Mormone, E., Lu, Y., Ge, X., Fiel, M.I., Nieto, N., 2012. Fibromodulin, an oxidative stress-sensitive proteoglycan, regulates the fibrogenic response to liver injury in mice. Gastroenterology 142, 612-621.e615.

Newsome, P.N., Plevris, J.N., Nelson, L.J., Hayes, P.C., 2000. Animal models of fulminant hepatic failure: a critical evaluation. Liver Transpl. 6, 21-31.

O'Dea, E., Hoffmann, A., 2009. NF-kappaB signaling. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 107-115.

Ogata, N., Yamamoto, H., Kugiyama, K., Yasue, H., Miyamoto, E., 2000. Involvement of protein kinase C in superoxide anion-induced activation of nuclear factor-kappa B in human endothelial cells. Cardiovasc. Res. 45, 513-521.

Parola, M., Leonarduzzi, G., Biasi, F., Albano, E., Biocca, M.E., Poli, G., Dianzani, M.U., 1992. Vitamin E dietary supplementation protects against carbon tetrachloride-induced chronic liver damage and cirrhosis. Hepatology 16, 1014-1021.

Porter, W.R., Neal, R.A., 1978. Metabolism of thioacetamide and thioacetamide S-oxide by rat liver microsomes. Drug Metab. Dispos. 6, 379-388.

Robinson, S.M., Mann, D.A., 2010. Role of nuclear factor kappaB in liver health and disease. Clin. Sci. (Lond.) 118, 691-705.

Rosenthal, P., 1997. Assessing liver function and hyperbilirubinemia in the newborn. National Academy of Clinical Biochemistry. Clin. Chem. 43, 228-234.

Saeed, N.M., El-Demerdash, E., Abdel-Rahman, H.M., Algandaby, M.M., Al-Abbasi, F.A., Abdel-Naim, A.B., 2012. Anti-inflammatory activity of methyl palmitate and ethyl palmitate in different experimental rat models. Toxicol. Appl. Pharmacol. 264, 84-93.

Said, E., Said, S.A., Gameil, N.M., Ammar, E.M., 2013. Modulation of thioacetamide-induced liver fibrosis/cirrhosis by sildenafil treatment. Can. J. Physiol. Pharmacol. 91, 1055-1063.

Schwartz, R., Davidson, T., 2004. Pharmacology, pharmacokinetics, and practical applications of bortezomib. Oncology (Williston Park) 18, 14-21.

Shapiro, H., Ashkenazi, M., Weizman, N., Shahmurov, M., Aeed, H., Bruck, R., 2006. Curcumin ameliorates acute thioacetamide-induced hepatotoxicity. J. Gastroenterol. Hepatol. 21, 358-366.

Shi, Y., Tang, B., Yu, P.W., Tang, B., Hao, Y.X., Lei, X., Luo, H.X., Zeng, D.Z., 2012. Autophagy protects against oxaliplatin-induced cell death via ER stress and ROS in Caco-2 cells. PLoS One 7, e51076.

Shoeib, A.M., Said, E., Ammar, E.M., 2015. Cytoprotective potential of tiron and methyl palmitate against acetaminophen-induced acute liver injury. Can. J. Physiol. Pharmacol., 1-8.

Shrivastava, S., Jadon, A., Shukla, S., 2007. Effect of tiron and its combination with nutritional supplements against vanadium intoxication in female albino rats. J. Toxicol. Sci. 32, 185-192.

Sun, F., Hayami, S., Ogiri, Y., Haruna, S., Tanaka, K., Yamada, Y., Tokumaru, S., Kojo, S., 2000. Evaluation of oxidative stress based on lipid hydroperoxide, vitamin C and vitamin E during apoptosis and necrosis caused by thioacetamide in rat liver. Biochim. Biophys. Acta 1500, 181-185.

Szabo, C., Zingarelli, B., Salzman, A.L., 1996. Role of poly-ADP ribosyltransferase activation in the vascular contractile and energetic failure elicited by exogenous and endogenous nitric oxide and peroxynitrite. Circ. Res. 78, 1051-1063.

Trey, C., Davidson, C.S., 1970. The management of fulminant hepatic failure. Prog. Liver Dis. 3, 282-298.

Yang, J., Su, Y., Richmond, A., 2007. Antioxidants tiron and N-acetyl-L-cysteine differentially mediate apoptosis in melanoma cells via a reactive oxygen species-independent NF-kappaB pathway. Free Radic. Biol. Med. 42, 1369-1380.

Zafarullah, M., Li, W.Q., Sylvester, J., Ahmad, M., 2003. Molecular mechanisms of N-acetylcysteine actions. Cell. Mol. Life Sci. 60, 6-20.



DOI: https://doi.org/10.14499/jfps

Article Metrics

Abstract views : 1218 | views : 1099

Refbacks



Journal of Food and Pharmaceutical Sciences (ISSN: 2339-0948) -  Universitas Gadjah Mada, Indonesia.